r———

" AD-A282 270

Improving Productivity
in the
Development of Large Software Systems

Final Report
Contract N00014-85-C-0710

Submitted to

Advanced Research Projects Agency
Contracts Management (CMO)
3701 North Fairfax Drive.
Arlington, VA 22203-1714

This document bas been qpprovod
for public release and sale; it
distribution is unlimited

by

Software Options, Inc.
22 Hilliard Street

TI0 .
Cambridge, Mass. 02138 .-~ @UATTTY INSPEGTED 1

February 17, 1994

91 v 19 219

NIEREIRND T

DTlC QU&ML L hdvuis wloddust 2




Final Report

The project began with a re-examination of the roles and boundaries of programming
languages and environments. The belief was that present technology was a result of histor-
ical drift rather than technical foresight. The expectation was that a fresh look at modern
hardware and programming practices would result in significantly better languages and en-
vironments. By “better” we mean the results would, for example, reduce redundant effort
and increase automation of implicit tasks, in order to allow the programmer to focus on the
content of a problem. These are vague and lofty goals but our plan was specific and concrete.
We developed appropriate formal underpinnings on which we based the implementation of
infrastructures for developing languages and environments. We used the infrastructures to
design and implement a new language and environment, called E-L.

We addressed language issues {Kard] that had not been satisfactorily addressed in any
existing language, such as module interface specifications, extensible types, type templates
and type resolution, overloading, and the relationship among state, equality and conver-
sion [Kar87b]. We also embraced important language features that were not novel, such
as functions and types as first class values, functions returning multiple values, programs
as data, and syntactic extension. In addition to specific language issues, we developed an
infrastructure for designing and implementing languages. It was clear then, as it is now, that
(1) one language will never suit all purposes; (2) program analysis tools are important and
costly to implement; and (3) the number of different machine architectures will continue to in-
crease. Given these factors, we developed a formalism for defining a language [Kar88, KH91]
and implementing a translator [KTb, Kar94] for it to a small, simple kernel. Tools operate
at the kernel-level, including interpreters [Kar87a], analyzers [KRb, KRc], and optimizers.
From this small, target-independent kernel, code generators produce target-specific instruc-
tions [Mor91]. We used the kernel-based approach to implement the E-L language, and it is
being used at Harvard to study language design and progran: {ransformation issues for high
performance architectures. The kernel-based approach is also playing a role in the design of
a debugger interface.

This approach to language design and implementation creates an open “compiler” with
many steps and tools involved in going from what a programmer writes to optimized code on
a variety of targets. The consequence increases the advantages of an environment with better
configuration and version management than RCS- and make-based tools provide. With this
context in mind and a desire to support literate programming [CHK] and teams of program-
mers working cooperatively on a network of geographically distributed workstations [Kari],
we implemented a development environment, called the Artifacts System [Karb, Towa]. This
too is an open infrastructure. Though it presents a uniform and seamless interface to the
user, it is extensible at various levels: through the integration of editors, tools [KHRc], and
repositories. The purpose of the Artifacts System is to structure complex, evolving data,
to assist users in their cooperative effort to develop such data, and to integrate the tools
that operate on and produce this data. A key element in the design is to eliminate what is
the usual interaction with a computer-based system: run a tool to achieve a desired effect.
Rather, users of the Artifacts System set up structures that indicate desired results and
browse these structures in hypertext-like fashion; tool invocation is usually implicit. More-
over, version and configuration management is an integral part of the system, not a facility
on the side. The Artifacts System has been in daily use at Software Options for several years
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and hosts its own development. It currently supports programming [Towb] in C [Karh] and
Common Lisp [KMH] and is awaiting the completion of GNAT to include Ada. The next
step is to broaden the community of users, perhaps by finding a partner to commercialize it
or by finding a small amount of funding to make it suitable for access and use via anonymous
ftp.

We described the third major result of the project, a code generator based on a novel
approach to code generation called coagulation [Kar84, Mor91], in earlier reports. We have
recently begun a new ARPA-supported project to adapt the coagulation ideas to high per-
formance computers.

We conclude by listing the many reports produced in the final phase of this contract,
all of which are available from Software Options. We are also including copies of five docu-
ments [Karb, Towa, KHRc, Kar94, KR89] that are relatively comprehensive descriptions of
the work.
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